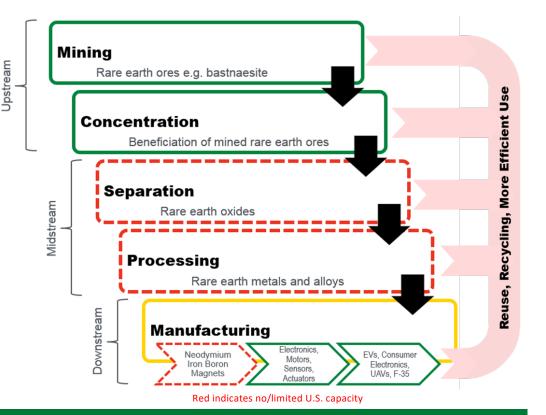


DOE Critical Material R&D Programs

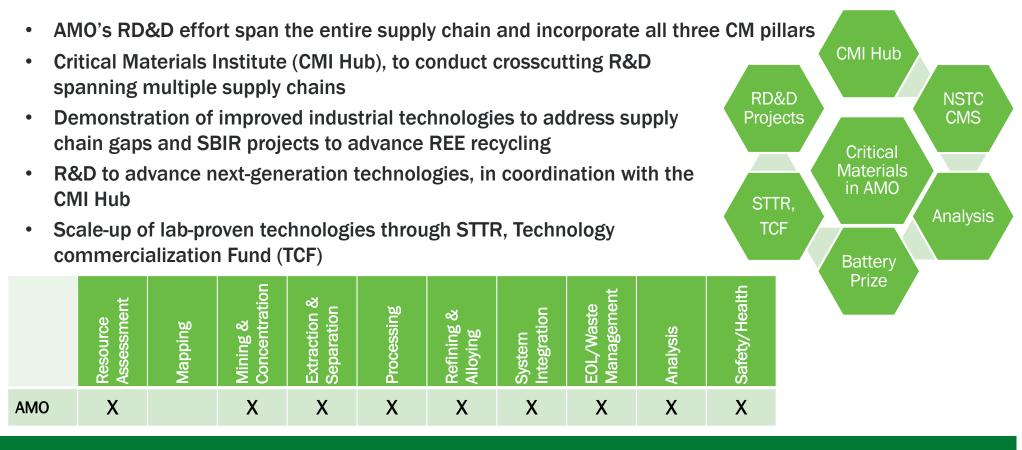
Thomas Lograsso Oklahoma Geological Survey Critical Mineral Workshop November 10, 2021



DOE Critical Materials Strategy

To address supply chain risks and build resilient, diverse and secure supply chains, DOE's strategy is based on 3 pillars

- **Diversifying Supply** 1.
- **Developing Substitutes** 2.
- 3. Reuse, Recycling & More Efficient Use, including Balanced Coproduction


- all in a safe, sustainable, and environmentally just way

Electrical Efficiency and

Advanced Manufacturing Office: Critical Materials RD&D

Electrical Efficiency and Renewable Energy

Research, development, and demonstration projects (RD&D)

\$50 million awarded

15 projects selected

FOUR PROJECTS to validate and demonstrate extraction, separation, and

processing technologies (\$44.7M)

ELEVEN PROJECTS

for next-generation extraction, separation, and processing technologies (\$5.3M)

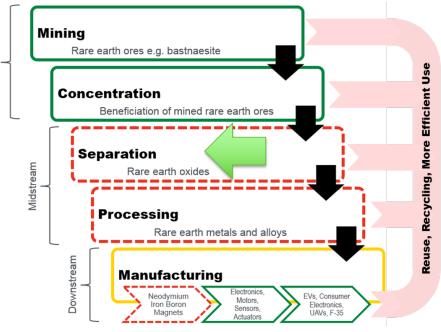
Coordination with the Critical Materials Institute

- AMO projects will be expected to coordinate with CMI
- 7 projects partnered with CMI team members: Colorado School of Mines, Ames Lab, LLNL, ORNL
- 3 projects led by or partnered with CMI affiliates

Lithium R&D Virtual Center

To meet FY20 congressional direction, lithium projects will be expected to meet every six months


Electrical Efficiency and Renewable Energy


Demonstration & Pilot Projects

Rare Earth Elements Separation & Processing Demonstration Project

Upstream

- Demonstration of rare earth oxide separation for magnet manufacturing using novel technology
- Up to 15 tons of >99.5 pure neodymiumpraseodymium oxide will be produced

Red indicates no/limited U.S. capacity

Electrical Efficiency and Renewable Energy

Demonstration & Pilot Projects

Field Demonstration of Selective Leaching, Targeted Purification, and Electro-Chemical Production of Battery Grade Lithium Hydroxide Precursor from Domestic Claystone Resources

- Field validation of first-of-kind integrated set of processing technologies to produce lithium hydroxide from claystone
- Throughput of ~5 metric tonnes of ore per day
- Electrolytic Production of Battery-Grade Lithium Hydroxide from Geothermal Brine
 - Demonstration of battery-grade lithium hydroxide converted from geothermal brines solutions via electrolysis
 - ~25 kg/hr of 99.5% pure lithium hydroxide for EV batteries

Graphite

Lithium

- High Efficiency Continuous Graphitization Furnace Technology for Lithium-Ion Battery Synthetic Graphite Material
 - Pilot validation of first-in-the-world powder continuous induction-based graphitization furnace
 - Up to 200 kg/hr high throughput production of synthetic graphite

Electrical Efficiency and Renewable Energy

Mining & Extraction Cobalt: Lithium: Manganese: Graphite: by-production, hard rock, marine sedimentar flake, amorphou co-production brines deposits Reuse, Recycling, More Efficient Use Processing Midstream Precursors Anode powders Manufacturing Cathode Anode Istream Dowr Battery pack and cells EVs. Stationary Storage

Red indicates no/limited U.S. capacity

Minerals Sustainability Division

Pillar 1

system with AI/ML

beneficiation/ concentration methods and technologies

Pillar 2

 Remediation of existing sites and abandoned mine residuals

Processing, Refining, & Alloying Technology Development

Critical Materials

- Advanced extraction, purification, and reduction technologies through refining and alloying materials
- Enable commercial production through innovations
- First mover and secondgeneration large-scale pilot projects

Pillar 3b

Processing and Manufacturing Technology Development

Carbon Ore

- Housing and infrastructure development
- Advanced carbon material (carbon fiber, graphene, and nanomaterial) production
- Reinvest in critical (graphite and silicon) supply chains

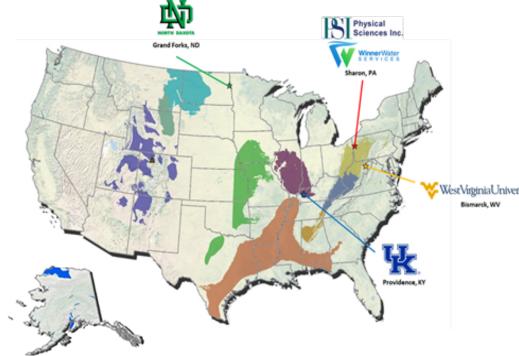
International Engagements, Standards and Supply Chain Development

Ni, CO, Cr for Superalloys

- Identify co-production sources to meet increased demand in these metals
- Application of innovative processing, refining, and alloying technologies to increase purity from the waste materials

Carbon Ore to Products

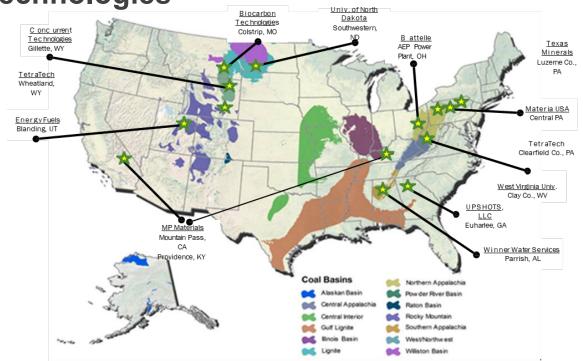
- · Assessment and characterization of coal and waste materials
- · Environmentally responsible extraction and beneficiation
- · Co-production of high purity carbon and critical material products



Fossil Energy and Carbon Management

Pillar 3a

Small Scale Pilots: Proving Technical Feasibility (1)



Projects increased purity of MREOs being produced up to 99%

ENERGY Fossil Energy and Carbon Management

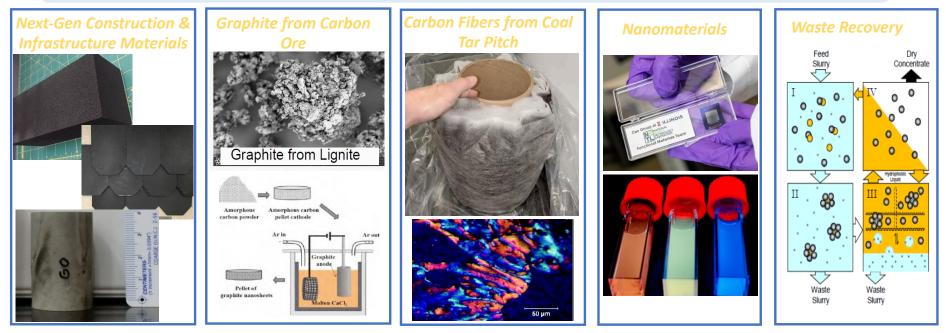
Quantity	Quantity MREO Produced Annually				
	2018	2019	2020	2021	
UKY	0.6 kg	1.5 kg	0.5 kg	Processing	
(Refuse)	80% purity	>90% purity	~98% purity	Begins in Fall	
WVU	44 g		Field Pilot Construction (Facility Start Up January 2022		
(AMD)	95 – 99% purity				
	0.01 kg MRES	0.149 kg MRES	1.06 kg MRES	1.76 kg MRES	
PSI (ASH)	≤10% purity	≤14% purity	≤67% purity	≤91% purity	
	0.004 kg MREO equivalent	0.057 kg MREO equivalent	0.41 kg MREO equivalent	0.67 kg MREO equivalent	
	5-10 g	500 g	Pilot Construction (Facility Start – Up October 2021)		
UND (Lignite)		30 -85% purity			
	5 – 15%	4000 g			
	purity	4 – 9 % purity			

Pre-FEED Studies: Toward Transformational Technologies

Initial Potential Byproducts or Coproducts

Alumina, Aluminum hydroxide, Cobalt Oxide, Carbon, Cement Substitute, Ferric Chloride, Gallium, Gasifier slag products, Germanium, Halfnium, Iridium, Iron Oxide, Lithium, Magnetite, Niobium, Pigiron, Quartz, Titanium Oxide, Upgraded Lignite, Uranium, Zirconium, and Zeolite

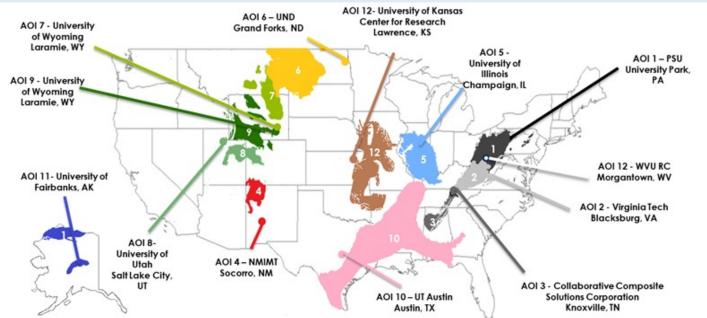
Fossil Energy and Carbon Management


Option Projects

Contractor	Feedstock	Region of Feedstock	
West Virginia University	Acid Mine Drainage	Northern/Central Appalachian Coal and Montana Copper Mine	
MP Materials	Refuse Heap Leaching	Kentucky Coarse Mine Refuse and AMD sludge	
Energy Fuels	Coal Measures Sediments (Existing mine)	New Mexico	
University of North Dakota	Lignite (Existing mine)	North Dakota	
Winner Water Services	PCC Fly Ash	Georgia (Plant Gorgas)	
Tetra Tech - PA	Appalachian Underclays	Pennsylvania	
Texas Minerals	Appalachian (anthracite) Underclays	Pennsylvania (Luzerne County) Jeddo Coal Eckley North	
Materia USA	Appalachian Pennsylvania Underclays (Clearfield Count		

Carbon Ore Processing

Opportunities toward a clean energy transition -- Advanced processing of carbon ore and associated byproducts for the development of everyday and high value carbon products


- Generated predominantly from *coal waste and refuse* toward remediation
- Enable domestic manufacturing of strategic materials to encourage job creation
- Ensure the health and safety of the environment and people around the use and disposal of carbon-based products

CORE-CM Regional Challenges

Building coalitions to develop and implement strategies that accelerate and realize the full economic potential of carbon ore and critical minerals across the U.S.

- Address the upstream and midstream CM supply chain and downstream manufacturing of high-value, nonfuel, carbon-based products, ores and critical minerals
- Co-located with economically stressed communities in need of clean energy jobs and will provide the foundation for educating next generation technicians, skilled workers, and STEM professionals.

Questions!

Advanced Manufacturing Office

- <u>www.energy.gov/eere/amo</u>
- Dr. Helena Khazdozian
- <u>helena.khazdozian@ee.doe.gov</u>

Fossil Energy and Carbon Management

- <u>https://www.energy.gov/fecm/division-</u> minerals-sustainability
- Dr. Traci Rodosta
- <u>traci.rodosta@hq.doe.gov</u>